Betweenness is a well-known centrality measure that ranks the nodes according to their participation in the shortest paths of a network. In several scenarios, having a high betweenness can have a positive impact on the node itself. Hence, in this article, we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. In particular, we study the problem of maximizing the betweenness score of a given node—Maximum Betweenness Improvement (MBI)—and that of maximizing the ranking of a given node—Maximum Ranking Improvement (MRI). We show that MBI cannot be approximated in polynomial-time within a factor (1−1/2e) and that MRI does not admit any polynomial-time constant factor approximation algorithm, both unless ^{5} edges in most cases in a matter of seconds or a few minutes.